新闻中心

华体会体育太阳能光伏知识

2023-04-17 10:29:05
浏览次数:
返回列表

  水情遥测系统采集数据测量站点不少处于交通不便、无电网供电的地方。为设计一点二址的水情遥测系统中,对其中的一站点电源设计选用太阳能对蓄电池进行补充的电源方案。

  其次,选择的太阳能发电板和蓄电池应是经济、可靠性的。既要防止太阳能发电板在阴雨期容量不够,达不到测量目的,又要避免容量过大,造成浪费。

  6.光伏电站:10KW-50MW独立光伏电站、风光(柴)互补电站、各种大型停车厂充电站等。

  7.太阳能建筑:将太阳能发电与建筑材料相结合,使得未来的大型建筑实现电力自给,是未来一大发展方向。

  8.其他领域包括:(1)与汽车配套:太阳能汽车/电动车、电池充电设备、汽车空调、换气扇、冷饮箱等;(2)太阳能制氢加燃料电池的再生发电系统;(3)海水淡化设备供电;(4)卫星、航天器、空间太阳能电站等。

  5.太阳能光—电转换:一束光照在半导体上和照在金属或绝缘体上效果截然不同。由于金属中自由电子如此之多,以致光引起的导电性能的变化完全可忽略。绝缘体在很高温度下仍未能激发出更多的电子参加导电。而导电性能介于金属和绝缘体之间的半导体对体内电子的束缚力远小于绝缘体,可见光的光子能量就可以把它从束缚激发到自由导电状态,这就是半导体的光电效应。当半导体内局部区域存在电场时,光生载流子将会积累,和没有电场时有很大区别,电场的两侧由于电荷积累将产生光电电压,这就是光生伏特效应,简称光伏效应。太阳电池就是利用这种效应制成的。

  镉镍GN 和铅酸CS 蓄电池的单体浮充电压分别为1.4~1.6V和2.2V。

  1.用户太阳能电源:(1)小型电源10-100W不等,用语边远无电地区如高原、海岛、牧区、边防哨所等军民生活用电,如照明、电视、收录机等;(2)3-5KW家庭屋顶并网发电系统;(3)光伏水泵:解决无电地区的深水井饮用、灌溉。

  2.交通领域:如航标灯、交通/铁路信号灯、交通警示/标志灯、路灯、高空障碍灯、高速公路/铁路无线亭、无人值守道班供电等。

  太阳能转换为电能有两种基本途径:一种是把太阳辐射能转换为热能,即“太阳热发电”;另一种是通过光电器件将太阳光直接转换为电能,即“太阳光发电”。太阳热发电,全世界以以色列的技术最为先进。吸取加州的技术,巴西、印度、摩洛哥正在计划进行设备的建设,世界银行已开始提供资给开发中的国家。入射到地球表面的太阳能是广泛而分散的,要充分收集并使之发挥热能效益,就必须采取一种一种能把太阳光发射并集中在一起,变成热能的系统。一种方法是采取一种能把太阳光发射并集中集中加热,转换成为高温水蒸气,以蒸汽涡轮机变换为电。也可以采用抛物面型的聚光镜将太阳热集中,使用计算机让聚光镜追随太阳转动。后者的热效率很高,将引擎放置在焦点的技术发展的可能性最大。

  、1、太阳能电池发电原理:太阳电池是一种对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现已晶体硅为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。

  当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的的实质是:光子能量转换成电能的过程。

  9。太阳光发电和太阳热发电:地球所接受的太阳能功率,平均每平方米为1353千瓦,这就是所谓的“太阳常数”。也就是说,太阳每秒钟照射到地球上的能量约为500万吨煤当量。就是这些能量比目前全世界人类的能耗量大3.5万倍。虽然很久以来,人们在不同程度地利用着其能量,最近,温水器的直接利用,空调、太阳能电池的电力供给以与太阳能住房等方面都有了很大发展。很自然的想法是向太阳要电能,但怎样有效的利用太阳所恩赐的能量,使其成为下世纪的一大可利用能源,是新能源开发中的一个重要课题。

  4、太阳电池基本性质: a)光电转换效率η%:评估太阳电池好坏的重要因素。目前:实验室η≈24%,产业化:η≈15%。b)单体电池电压V:0.4V---0.6V由材料物理特性决定。c)填充因子FF%:评估太阳电池负载能力的重要因素。

  除了太阳热发电技术外,目前人类社会也在大力开发太阳光技术。太阳辐射的光子带有能量,当光子照射半导体材料时,光能便转换为电能,这个现象叫“光生伏打效应”。太阳电池就是利用光生伏打效应制成的一种光电器件。太阳电池与普通的化学电池(干电池、蓄电池)完全不同,是一种物理性质电源。虽然太阳光一照射太阳电池就能发电,但它与一般的发电机大相径庭,它无旋转和磨损,能静悄悄地发电。

  其中:Isc--短路电流, Voc--开路电压, Im--最佳工作电流, Vm--最佳工作电压; d)标准光强与环境温度地面:AM1.5光谱,1000W/m2,t=25℃; e)温度对电池性质的影响。例如:在标准状况下,AM1.5光强,t=25℃某电池板输出功率测得为100Wp,如果电池温度升高至45℃时,则电池板输出功率就不到100Wp.

  3、太阳电池的应用:上世纪60年代,科学家们就已经将太阳电池应用于空间技术-----通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。如:太阳能庭院灯,太阳能发电户用系统,村寨供电的独立系统,光伏水泵(饮水或灌溉),通信电源,石油输油管道阴极保护,光缆通信泵站电源,海水淡化系统,城镇中路标、高速公路路标等。在世纪之交前后期间,欧美等先进国家光伏发电并入城市用电系统与边远地区自然村落供电系统纳入发展方向。太阳电池与建筑系统的结合已经形成产业化趋势。光伏电源系统的组成:

  2、晶体硅太阳电池的制作过程: 硅是我们这个星球上储藏最丰富的材料之一。自从上个世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维,20世纪末,我们的生活中处处可见硅的身影和作用,晶体硅太阳电池是近15年来形成产业化最快的。生产过程大致可分为五个步骤:a)提纯过程b)拉棒过程c)切片过程d)制电池过程e)封装过程.如下图所示:

  制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。

  所以,将入射太阳光能转换成电能的半导体器件称为太阳能电池。它一般由两种不同导电类型的同质或异质半导体构成。目前,在空间或地面获得应用的只有硅电池,研究得比较成熟的还有砷化镓电池、硫化镉电池。硅太阳能电池是1954年由美国皮尔逊等人首次制成,1958年首次应用在“先锋1号”卫星上。1958年,我国亦开始研究太阳能电池,在1971年3月发射的科学实验卫星上首次应用,随着硅电池制造成本的逐年降低和技术的日益成熟,太阳能电池必将获得更广泛的应用。

  按材料可分类硅薄膜形、化合物半导体薄膜形和有机薄膜形,百化合物半导体薄膜形又分为非结晶形(a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP)、ⅡⅥ族(cds系)和磷化锌(Zn3P2)等。

  8.太阳能电池:太阳能电池是利用电池将光的能量直接转变成电能,太阳光是宇宙取之不尽,用之不竭的天然能源,又具安全、方便与无污染的特性,故太阳能再生能源的开发利用有其必要性。

  硅太阳能发电板容量是指平板式太阳能板发电功率WP。太阳能发电功率量值取决于负载24h所消耗的电力HWH ,由负载额定电源与负载24h所消耗的电力,决定了负载24h消耗的容量PAH ,华体会体育再考虑到平均每天日照时数与阴雨天造成的影响,计算出太阳能电池阵列工作电流IPA 。

  由负载额定电源,选取蓄电池公称电压,由蓄电池公称电压来确定蓄电池串联个数与蓄电池浮充电压VFV ,再考虑到太阳能电池因温度升高而引起的温升电压VTV 与反充二极管P-N结的压降VDV 所造成的影响,则可计算出太阳能电池阵列的工作电压VPV ,由太阳电池阵列工作电源IPA 与工作电压VPV ,便可决定平板式太阳能板发电功率WPW,从而设计出太阳能板容量,由设计出的容量WP与太阳能电池阵列工作电压VP,确定硅电池平板的串联块数与并联组数。

  目前美国、欧洲各国特别是德国与日本、印度等都在大力发展太阳电池应用,开始实施的十万屋顶计划、百万屋顶计划等,极大地推动了光伏市场的发展,前途十分光明。

  7.什么是太阳能电池?有哪些分类?太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的菁膜式太阳能电池为主流,而以光化学效应工作的式太阳能民池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴由-电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。太阳能电池按结晶状态可分为结晶系薄式和非结晶系膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。

  8.根据VP、WP在硅电池平板组合系列表格,确定标准规格的串联块数和并联组数。

  3.通讯/通信领域:太阳能无人值守微波中继站、光缆维护站、广播/通讯/寻呼电源系统;农村载波光伏系统、小型通信机、士兵GPS供电等。

  4.石油、海洋、气象领域:石油管道和水库闸门阴极保护太阳能电源系统、石油钻井平台生活与应急电源、海洋检测设备、气象/水文观测设备等。

  5.家庭灯具电源:如庭院灯、路灯、手提灯、野营灯、登山灯、垂钓灯、黑光灯、割胶灯、节能灯等。

  当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能、如果半导体内存在P—n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P—n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。

  太阳能电池的种类:太阳能电池的种类有单晶硅与非晶硅、多结晶硅三大类,而目前市场应用上大多为单晶硅与非晶硅。(1)单结晶硅太阳电池,

  单晶硅电池最普遍,多用於发电厂、充电系统、道路照明系统与交通号志等,所发电力与电压范围广,转换效率高,使用年限长,世界主要大厂,如德国西门子、英国石油公司与日本夏普公司均以生产此类单晶硅太阳能电池为主,市场占有率约五成,单晶硅电池效率从11%~24%,太空级(蒸镀式)晶片从16%~24%,当然效率愈高其价格也就愈贵。(2)多结晶硅太阳电池,多晶硅电池的效率较单晶硅低,但因制程步骤较简单,成本亦低廉,较单晶硅电池便宜20%,因此一些低功率的电力应用系统均采用多晶硅太阳电池。

  1.蓄电池单独工作天数。在特殊气候条件下,蓄电池允许放电达到蓄电池所剩容量占正常额定容量的20%。

  2.蓄电池每天放电量。对于日负载稳定且要求不高的场合,日放电周期深度可限制在蓄电池所剩容量占额定容量的80%。

搜索